743 research outputs found

    Maximizing Symmetric Submodular Functions

    Full text link
    Symmetric submodular functions are an important family of submodular functions capturing many interesting cases including cut functions of graphs and hypergraphs. Maximization of such functions subject to various constraints receives little attention by current research, unlike similar minimization problems which have been widely studied. In this work, we identify a few submodular maximization problems for which one can get a better approximation for symmetric objectives than the state of the art approximation for general submodular functions. We first consider the problem of maximizing a non-negative symmetric submodular function f ⁣:2NR+f\colon 2^\mathcal{N} \to \mathbb{R}^+ subject to a down-monotone solvable polytope P[0,1]N\mathcal{P} \subseteq [0, 1]^\mathcal{N}. For this problem we describe an algorithm producing a fractional solution of value at least 0.432f(OPT)0.432 \cdot f(OPT), where OPTOPT is the optimal integral solution. Our second result considers the problem max{f(S):S=k}\max \{f(S) : |S| = k\} for a non-negative symmetric submodular function f ⁣:2NR+f\colon 2^\mathcal{N} \to \mathbb{R}^+. For this problem, we give an approximation ratio that depends on the value k/Nk / |\mathcal{N}| and is always at least 0.4320.432. Our method can also be applied to non-negative non-symmetric submodular functions, in which case it produces 1/eo(1)1/e - o(1) approximation, improving over the best known result for this problem. For unconstrained maximization of a non-negative symmetric submodular function we describe a deterministic linear-time 1/21/2-approximation algorithm. Finally, we give a [1(11/k)k1][1 - (1 - 1/k)^{k - 1}]-approximation algorithm for Submodular Welfare with kk players having identical non-negative submodular utility functions, and show that this is the best possible approximation ratio for the problem.Comment: 31 pages, an extended abstract appeared in ESA 201

    Constrained Monotone Function Maximization and the Supermodular Degree

    Get PDF
    The problem of maximizing a constrained monotone set function has many practical applications and generalizes many combinatorial problems. Unfortunately, it is generally not possible to maximize a monotone set function up to an acceptable approximation ratio, even subject to simple constraints. One highly studied approach to cope with this hardness is to restrict the set function. An outstanding disadvantage of imposing such a restriction on the set function is that no result is implied for set functions deviating from the restriction, even slightly. A more flexible approach, studied by Feige and Izsak, is to design an approximation algorithm whose approximation ratio depends on the complexity of the instance, as measured by some complexity measure. Specifically, they introduced a complexity measure called supermodular degree, measuring deviation from submodularity, and designed an algorithm for the welfare maximization problem with an approximation ratio that depends on this measure. In this work, we give the first (to the best of our knowledge) algorithm for maximizing an arbitrary monotone set function, subject to a k-extendible system. This class of constraints captures, for example, the intersection of k-matroids (note that a single matroid constraint is sufficient to capture the welfare maximization problem). Our approximation ratio deteriorates gracefully with the complexity of the set function and k. Our work can be seen as generalizing both the classic result of Fisher, Nemhauser and Wolsey, for maximizing a submodular set function subject to a k-extendible system, and the result of Feige and Izsak for the welfare maximization problem. Moreover, when our algorithm is applied to each one of these simpler cases, it obtains the same approximation ratio as of the respective original work.Comment: 23 page

    The Submodular Secretary Problem Goes Linear

    Full text link
    During the last decade, the matroid secretary problem (MSP) became one of the most prominent classes of online selection problems. Partially linked to its numerous applications in mechanism design, substantial interest arose also in the study of nonlinear versions of MSP, with a focus on the submodular matroid secretary problem (SMSP). So far, O(1)-competitive algorithms have been obtained for SMSP over some basic matroid classes. This created some hope that, analogously to the matroid secretary conjecture, one may even obtain O(1)-competitive algorithms for SMSP over any matroid. However, up to now, most questions related to SMSP remained open, including whether SMSP may be substantially more difficult than MSP; and more generally, to what extend MSP and SMSP are related. Our goal is to address these points by presenting general black-box reductions from SMSP to MSP. In particular, we show that any O(1)-competitive algorithm for MSP, even restricted to a particular matroid class, can be transformed in a black-box way to an O(1)-competitive algorithm for SMSP over the same matroid class. This implies that the matroid secretary conjecture is equivalent to the same conjecture for SMSP. Hence, in this sense SMSP is not harder than MSP. Also, to find O(1)-competitive algorithms for SMSP over a particular matroid class, it suffices to consider MSP over the same matroid class. Using our reductions we obtain many first and improved O(1)-competitive algorithms for SMSP over various matroid classes by leveraging known algorithms for MSP. Moreover, our reductions imply an O(loglog(rank))-competitive algorithm for SMSP, thus, matching the currently best asymptotic algorithm for MSP, and substantially improving on the previously best O(log(rank))-competitive algorithm for SMSP
    corecore